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We solve the Euclidean Einstein equations with three-index antisymmetric and two-index an-
tisymmetric (electromagnetic) tensors for monopole configurations on a space with three-surfaces of
topology S’ XS§? and describe wormhole solutions. We show that these wormholes and the one of
Giddings and Strominger, Hawking, Halliwell and Laflamme, and Myers can be obtained by slicing

five-dimensional spaces with horizons.

I. INTRODUCTION

Giddings and Strominger recently wrote down a solu-
tion to the Einstein equations with a third-rank antisym-
metric tensor field matter source which represents a
wormhole, or bridge, connecting two asymptotically flat
regions of Euclidean space.! This solution was general-
ized by Myers to the case of a nonzero positive cosmolog-
ical constant, in arbitrary dimensions.? Hawking® and
Halliwell and Laflamme* investigated the possibility that
the matter source be a massless conformally coupled sca-
lar field instead of an antisymmetric tensor field and
Dowker® has studied the electromagnetic case. These
solutions have been useful in making more concrete dis-
cussion of the mechanism recently proposed by Coleman
for the vanishing of the cosmological constant.®

In both cases, the wormholes have topology R XS3. In
this Brief Report we investigate the possibility of having
wormholes with baby universes of topology S!XS?% We
look for solutions with three- and two-antisymmetric-
index tensor fields. We conclude by showing that all the
known wormholes are related to five-dimensional spaces
with horizons.

II. WORMHOLE SOLUTIONS

We assume the following form of the Euclidean action
for fixed initial and final three-geometries:

_ 4 _ R f2H2 eZFZ
Ip=[d'xVg 167G 3t T 2
+ [axviE X @.1)
87G ’
40

where R is the Ricci scalar, H is an antisymmetric three-
index tensor with coupling constant f2, and finally F is
the usual electromagnetic tensor with coupling e2.

In this Brief Report we investigate homogeneous solu-
tions which extremize the action (2.1) and have a metric
of the form

ds’=c [N¥r)d*+a¥r)dri*+bXr)d 03], (2.2)

where # is the coordinate of a submanifold of topology S'!
and has range [0,27], dQ} is the metric on the two-
sphere S? and 0?=G /27. Moreover we will investigate
“monopole” solutions for the field H, i.e., H is propor-
tional to the volume element of the surface of topology
S'XS? and that F is the usual monopole on the two-
sphere:
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We will seek solutions with fixed values of the charges
Q. and @,, (we do not allow variations of these charges,
for an alternative viewpoint see Ref. 7). With these as-
sumptions the action reduces to
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It is possible to greatly simplify this action using the
change of variable
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p =Ina, q=Inab, and N=N/ab?, (2.5)
and thus obtain
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This yields the classical equations

p—e®Qn =0, (2.72)

§—e=0 (2.7b)
and the constraint
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in the gauge N=1. It is straightforward to solve these
equations to get
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where C and D are constrained by the equation
C—D—0;=0; (2.80)

ty, 3, B, C, and D are constants of integration. Thus we

have the following possible solutions.
(a) 2,,=0, C=0:

st=—— L g tatdr?+d 0}
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with @ being constant and 7=|Q, | /{@ sin[|Q, (¢t —¢,)1}.
This wormhole solution corresponds to a fixed radius of
the S! and the radius of the S? contracts from an
infinitely large value to a minimum and reexpands to
infinity. The line element (2.9) covers only half the
wormhole, from the asymptotically flat region to the
throat although it is possible to find a metric which cov-
ers the entire manifold. The action of this configuration
is @abyw, by=|Q,|/@ being the minimal radius of the
two-sphere.
b)Q,=0, t,=t,, C=D <0:
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and here 7=V —C /sin[V —C (¢ —t,)]. This case corre-
sponds to a wormhole in the S direction, keeping the S2
constant. The action of this configuration is zero.

It is also possible to find solutions where both @ and b
vary but no regular four geometries has the two scale fac-
tors going simultaneously to infinity.

2.9)

dr*+—dri+Q2d 03 (2.10)
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We have also investigated the possible inclusion of a
homogeneous electric field. It would have to be imagi-
nary in Euclidean space such that its analytical continua-
tion to Lorentzian space gives a real field. The imaginary
electric field would give rise to similar equations of
motion as the one from the magnetic field, so we will not
discuss them further. If we would have been interested in
a real Euclidean electric field we would only get a
different sign for the charge squared. This latter field
would reduce the effective charge (Q2 —Q2)*/2. No reg-
ular wormhole solution will exist for Q2> Q2 if Q,=0.
In the case Q,#0, solutions similar to the one presented
in Eq. (2.9) will exist but here, a will vary. However, no
solution will have both a and b going to infinity simul-
taneously.

III. DISCUSSION

In this Brief Report we have presented homogeneous
wormbhole solutions of a different topology and have cal-
culated their action. They are solutions for either a
monopole configuration of a three antisymmetric tensor
or of a two antisymmetric tensor (such as electromagne-
tism). The solutions are asymptotically flat but not
asymptotically Euclidean in the sense of Gibbons and
Pope.?

It is interesting to realize that both of these wormholes
and the one previously investigated in the literature
(Refs. 1-4) are in a sense related to each other. They are
all dimensional reductions of five-dimensional (5D) spaces
with horizons.

The simplest example is the ‘“Schwarzschild” black
hole in five dimensions. The metric is given by
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where A is related to the 5D mass of the black hole. A
slice of constant ¢ gives the wormhole described in Ref. 3.
The metric of the mentioned slice covers only half the
wormhole but it is possible to show that it can be extend-
ed to the metric

2

dsi= |1+

2
e, dxtdx,, . (3.2)

The metric (3.1) is the solution of the vacuum field equa-
tion in five dimensions. Using dimensional reduction we
can show that the metric (3.2) is the solution of the 4D
Einstein equations if a conformal field is added. Only the
scalar field has a homogeneous mode on the three-sphere;
therefore it is the one which has been used. It could also
be an approximate solution of an electromagnetic field
where the photons are in a roughly homogeneous state.
Adding a cosmological constant would give a
“Schwarzschild—de Sitter” type solution in 5D and its
4D analog would give the wormholes investigated in Ref.
4 .

It is also possible to show that if there is a monopole on
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a three-sphere of a three-index tensor as a matter source
in five dimensions, this will give the wormhole studied by
Giddings, Strominger, and Myers.

The solutions studied in this paper are also related to
space with horizons in five dimensions. The metric (2.9)
comes from a 5D black holes of the form ' 4D
Schwarzschild X R (such black holes were studied in Ref.
9). Finally the solution (2.10) corresponds to a 3D
anti—de Sitter XS? space including an electromagnetic
field. Taking the appropriate section of this space gives
the described wormhole. )

In fact, this shows that mathematically, Misner’s
wormholes'® are very similar to the one currently investi-
gated, his are only in one less dimension.
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